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Due to an urgent need to image the peripheral benzodiazepine receptor (PBR) in living human subjects
using positron emission tomography imaging, we had cause to prepare N-[(2-hydroxyphenyl)methyl]-
N-(4-phenoxy-3-pyridinyl) acetamide (desmethyl-PBR28 (1)), the precursor to [11C]PBR28. Herein, we
report a new synthesis of the precursor in which palladium-mediated reduction of the nitro pyridine
to the corresponding amino pyridine, and subsequent reductive amination, can be achieved with decab-
orane in a convenient one-pot procedure. This procedure is operationally simpler than the current alter-
natives and provides high quality precursor suitable for use in clinical applications.

� 2010 Elsevier Ltd. All rights reserved.
The use of positron emission tomography (PET) imaging to non- research groups have concentrated in developing new PET ligands

invasively diagnose disease, monitor patient response to therapy,
and elucidate biochemical mechanisms, all in living human subjects,
is becoming increasingly popular in the global clinical setting.1 In
addition to widespread clinical application, the use of PET imaging
within the pharmaceutical arena is also expanding, where it is
quickly becoming invaluable in drug discovery programs and to
monitor the impact of experimental drugs in clinical trials.2

Presently, there is significant interest in imaging the peripheral
benzodiazepine receptor (PBR), also known as the translocator pro-
tein 18 kDa,3 and a number of PET biomarkers for the PBR have
been reported in recent years.4–8 The PBR is different from the
brain receptors that bind c-amino butyric acid (GABA) and syn-
thetic benzodiazepines and is found on the outer membrane of
mitochondria in a number of cells, as well as plasma membranes
in erythrocytes. Imaging PBR using PET is of interest to nuclear
medicine physicians because PBR has been implicated in cancer
as well as a range of neurodegenerative diseases and nervous sys-
tem disorders. Moreover, an increase in PBR levels, which could be
quantified by increased uptake of a PBR biomarker, is considered to
be indicative of inflammation. A number of PET biomarkers that al-
low for imaging and evaluation of PBR are known and the most
common to date is [11C]PK11195.4 However, this biomarker is re-
ported to have a number of limitations including low brain pene-
tration and high non-specific binding. Therefore, a number of
ll rights reserved.
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for PBR and a number of new PET ligands, including DPA 713,5

[11C]DAA1106,6 [18F]FEDAA1106,7 and [11C]PBR28,8 have been
recently reported. In choosing a PET ligand to make available to
clinical investigators at the University of Michigan, we selected
N-(2-[11C]methoxybenzyl)-N-(4-phenoxy-3-pyridinyl) acetamide
([11C]PBR28, 2), developed by Pike and colleagues, because of its
high affinity for PBR (IC50 = 0.658 nm), favorable pharmacokinetics,
and appropriate dosimetry.9

The radiosynthesis of [11C]PBR28 is carried out in our laboratory
using well-established radiochemical reactions with carbon-1110

and has been extensively described by both Pike8a and Zheng8c last
year. Briefly, [11C]CO2 is delivered from a General Electric (GE) PET-
Trace cyclotron and converted to [11C]CH4 using a nickel-mediated
reduction in the presence of H2(g) at 350 �C. [11C]CH4 is then con-
verted to [11C]CH3I by reaction with iodine at 720 �C, and the reactiv-
ity of [11C]CH3I is enhanced by passing over a column of AgOTf at
200 �C to provide [11C]CH3OTf. The N-[(2-hydroxyphenyl)methyl]-
N-(4-phenoxy-3-pyridinyl) acetamide (PBR28 precursor, 1) is then
methylated with [11C]CH3OTf to provide [11C]PBR28 which is subse-
quently purified by semi-preparative HPLC. In our laboratory, the
whole process is automated by a GE Tracerlab FXC-Pro synthesis mod-
ule (Scheme 1). In order to provide [11C]PBR28 to physicians, we
needed a supply of high quality precursor 1, suitable for use in clin-
ical research.

A number of different syntheses for the preparation of desmeth-
yl-PBR28 (1) have been reported. They all follow the general sche-
matic illustrated in Figure 1 in which nitro pyridine 5 is first
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Scheme 1. Radiosynthesis of [11C]PBR28.
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reduced to the corresponding amine 6. Amine 6 is initially coupled
with o-salicylaldehyde via reductive amination, and subsequent
acetylation provides PBR28 precursor 1. In the synthesis reported
by Zheng and co-workers in 2009,8c the reduction of the nitro
group was achieved by refluxing with concd HCl in methanol in
the presence of SnCl2, and then a separate sodium borohydride-
mediated reductive amination to provide 1. This approach is effec-
tive and, indeed, we have previously used this strategy to prepare
PBR28 precursor in our laboratory. However, as stannous chloride
is highly toxic,11 there is general reluctance to use such tin com-
pounds during the synthesis of precursors that will be used in
the syntheses of clinical radiopharmaceutical doses. An alternative
and more attractive approach was the two-pot procedure reported
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Scheme 2. Synthesis of N-[(2-hydroxyphenyl)meth
by Pike’s group in which the reduction was achieved by treating
with concd HCl in the presence of iron powder, and subsequent
reductive amination, also using sodium borohydride and Dean–
Stark conditions.8a

However, as we considered strategies for the preparation of the
gram quantities of PBR28 precursor necessary to meet our routine
clinical demand, we were excited to read Yoon’s report of a one-pot
palladium/decaborane-mediated reduction of nitroaromatics fol-
lowed by subsequent reductive amination12 and were curious as
to whether it could be adapted for our needs. The use of Pd/C
makes the work-up faster, easier, and sustainable with a low ex-
pected Pd contamination.13 Whilst decaborane is also toxic,14 in
our experience it is easier to remove during work-up than stannous
chloride, and such a synthesis of the PBR28 precursor would be
operationally simpler than those previously reported.

Our novel synthetic approach to the PBR28 precursor is
illustrated in Scheme 2. Initially, commercially available 3-nitro-
pyridin-4-ol 3 was treated with PCl5 and POCl3 to provide 4-
chloro-3-nitropyridine 4 (73% yield) according to Pike’s procedure.8a

With 4 in hand, Wang’s procedure8c was employed to couple it with
phenol, in the presence of potassium carbonate, to provide 5 in 77%
yield without the need for chromatographic purification. Note: 4-
chloro-3-nitropyridine (4) is also commercially available, but the
commercial material was found to be �80% pure by 1H NMR analy-
sis. Consequently, following coupling with phenol, 5 had to be puri-
fied by flash chromatography and limited recovery from the column
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resulted in lower yields (50%) of 5 from this coupling reaction. There-
fore, it is preferential to prepare 4 in house (>90% purity) to avoid
purification, by flash chromatography, of intermediate 5.

With nitropyridine 5 in hand, it was subjected to Yoon’s proce-
dure,12 on gram scale, by dissolving in methanol (50 mL) and treat-
ing with palladium on carbon (0.05 equiv) and decaborane
(0.3 equiv).15 Refluxing for 30 min was sufficient to reduce the ni-
tro group to the corresponding amine and after this time the reac-
tion was cooled to room temperature. Salicylaldehyde (1.2 equiv)
and additional decaborane (0.3 equiv) were added and the reaction
was stirred for a further 2 h at rt. After this time, the reaction was
concentrated in vacuo and methanol (20 mL) was added to the
concentrate to triturate 7 as a white powder (25% yield, >95% pur-
ity by 1H NMR). The somewhat low yield was attributed to loss of
material during purification by trituration, but the loss was
deemed acceptable given the simplicity of the purification. How-
ever, due to the toxicity of decaborane,14 we wished to confirm
that, whilst convenient, trituration was indeed also suitable for re-
moval of residual decaborane from product 7. The proton NMR
spectrum of decaborane is complex due to the caged structure
and both proton–proton and proton–boron coupling interactions.16

Nevertheless, the NMR spectrum for intermediate 7 revealed no
signals attributable to decaborane, confirming residual levels at
least below the NMR limit of detection.

Finally, it was necessary to acetylate 7 to provide desmethyl-
PBR28 1. Initially, we followed Zheng’s room temperature proce-
dure8c (AcCl (2.2 equiv), DMAP (2.5 equiv), DCM, rt) but this reaction
turned out to be poor in our hands and we only acetylated the phenol
function. Therefore, we employed Pike’s acetylation procedure8a

(refluxing mixture of acetic acid and acetic anhydride) to provide
the O- and N-diacetylated species. Subsequent treatment with 5%
sodium hydroxide in methanol at rt was sufficient to deprotect the
phenol, whilst leaving the amide intact, and provided [11C]PBR28
precursor 1 (50% from 7, >95% purity by 1H NMR).17

In conclusion, a simplified synthesis of N-[(2-hydroxy-
phenyl)methyl]-N-(4-phenoxy-3-pyridinyl) acetamide (1), the pre-
cursor for [11C]PBR28, has been developed, employing a one-pot
reduction–reductive amination procedure. This synthetic strategy
is operationally simpler than other reported two-pot procedures
as it eliminates the need to use toxic tin(II) chloride, refluxing
hydrochloric acid, and Dean–Stark reductive amination conditions.
Clinical research with [11C]PBR28 is currently underway and will
be reported in due course.
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